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Introduction

Initial Research
Our initial research was proposed by Dr Xinyue Zhang as a topic in Federated Learning. To
begin, we conducted a literature review of the most prominent research papers in the field, and
held peer review sessions to communicate what each member learned that week. Doing this
allowed us to get much more familiar with the field in order to prepare us for attempting to
implement something

Federated Learning
The idea of splitting data and utilizing distributed computing for accelerating model training has
been an idea for a while. However, it didn’t have a real term for it until Google coined the term
‘Federated Learning’ (FL) in their paper [1].
FL allows for this accelerated learning by having a foundational model, pre-trained on some
data, distributed to each edge device, and having the edge device train that model on their own
data, summarize and encrypt that model, reintegrate the new model into the centralized model
for averaging and redistribution. This allows for much lower communication costs, elevated data
privacy, and accelerated training, due to only the model updates being sent, the data staying on
the local network, and allowing multiple devices to train in a distributed manner [2].

Federated learning also provides the architecture to allow for clients on participating edge
devices to have their own distinct models, personalized for the local dataset. Since the training
is offloaded to a device that may have its own unique distribution of data, the device is able to
continue training its local model on this subset of data for more specifically tailored models.

Knowledge Distillation
Knowledge Distillation is an idea within Federated Learning to train on a smaller model, so that
the computational power required to train is lowered, without a major tradeoff in performance. In
[3], the idea of having a larger mentor, or teacher model, can be used in conjunction with a
smaller mentee, or student model, as a way to distill knowledge through the Protégé Effect.
Current models are massive and require a lot of computational power and incur a high
communication cost to train and communicate, using the smaller model for the heavy lifting,
alongside a teacher model that can provide it’s results without back propagation, can allow for a
higher performing, smaller model that is easier to communicate.

The application of Knowledge Distillation as a training method in federated learning also serves
as a method to create federated systems with relatively lower communication costs. In our
survey of the field, a major issue with implementing federated systems is the communication
overhead. There are many problems that fix the paradigm of a federated learning solution,
however exist in systems where communication bandwidth may be limited. By utilizing



Knowledge distillation, you can not only reduce the training costs put on participating clients on
edge devices, but also reduce the size of the gradient needed to be transmitted for a round of
federated learning. It has been found in [XX] that in combination with gradient compression
techniques, this allows federated learning to be an effective solution in such cases.

Choosing a Problem
Federated Learning has many areas of ongoing study to improve the paradigm in different ways,
such as, data privacy, efficiency, communication, and reliability. Our motivation was centered
around finding a widely common problem with implementations of federated learning models,
data heterogeneity. An important consideration as well was addressing the problem while
maintaining many of the most recent improvements that have been made to federated learning.

Federated learning strategies vary widely, the method in which client models are selected and
combined is an important consideration for the use of federated learning, each having its
benefits and costs. Hence, the implementation used assumed that the federated model would
need efficient computation and communication costs. Taking inspiration from generative
federated learning strategies, and using leading methods of effective federated learning lead to
the implementation discussed in this paper.

Data Heterogeneity
Data heterogeneity is a major concern in federated learning. A normal assumption when training
a model is that the data is i.i.d, independent and identically distributed, this assumption does not
hold in many federated learning settings. Data heterogeneity leads to poor model performance
and difficulty training. There are several ways that data heterogeneity can be present. The
amount of data on each client could vary in quantity, for example the number of patients at a
hospital. Data format or quality can also vary, one hospital may provide higher resolution
imaging than another. The distribution of data can also vary by client, one hospital may have a
widely different demographic from another such as elderly who disproportionately suffer from
different health conditions from younger demographics. And finally the features of the data can
also vary, in a hospital different tests might be run to indicate the same condition.

In federated learning a single client who has a smaller, vastly different data distribution or
features may suffer from poor model performance. Alternatively another client that has vast
amounts of data that is dramatically different in distribution or features will cause the shared
trained model to perform poorly on all other client’s data by outweighing the impact of their
training or participating in training more frequently.



Implementation
The implementation portion of our project aims to address the problem we identified in our
research. Each member of the was tasked with implementing one of the following, Federated
Learning, Knowledge Distillation, and Variational Autoencoder. Each functional component can
then be combined to address the problem of data heterogeneity in a federated learning model
that utilizes the techniques discovered in our research to improve federated learning.

Dataset

MedMNIST
The MedMNIST Dataset was chosen as a viable dataset to simulate data heterogeneity. An
application found in research where federated learning could be applied and suffer from data
heterogeneity was hospital data. Patient data is private data that is stored in secure networks
that would likely not be provided to be aggregated by a third party in a centralized learning
model. Hospitals also vary in equipment used to gather data.

Implementation Tools

Flower
The network of clients participating in federated learning and the central server aggregating
model updates was simulated using Flower. Flower is an open source python project that allows
for both simulation of federated systems and the creation of deployable clients. For the
purposes and resource limitations of this work, simulating the network was an important step for
implementation. The following is a modified version of the Flower quickstart tutorial for
demonstration and explanation.

Model Parameter functions: (PyTorch)

def get_parameters(net) -> List[np.ndarray]:
return [val.cpu().numpy() for _, val in net.state_dict().items()]

def set_parameters(net, parameters: List[np.ndarray]):
params_dict = zip(net.state_dict().keys(), parameters)
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
net.load_state_dict(state_dict, strict=True)

In order to implement a federated learning model with Flower, there are only a few classes and
methods that need to be implemented. Functions for retrieving and setting model parameters
are given by Flower, and need to be overwritten for either PyTorch or TensorFLow and use
numpy for manipulation. Flower is capable of using either libraries for the model definition and



acts as a wrapper, which provides a significant level of abstraction from the implementation of
the model used on the clients.

Defining a model:

class Net(torch.nn.Module):
def __init__(self) -> None:
# Model Definition

def forward(self, x: torch.Tensor) -> torch.Tensor:
# Forward Propagation
return output

The model itself can then be defined as if you were implementing a class containing the model
for a monolithic learning model as well as training and testing functions to provide the forward
and backward passes over a given number of epochs.

Training and Testing Functions:

def train(net, trainloader, epochs: int, verbose=False):
"""Train the network on the training set."""
net.train()
for epoch in range(epochs):
for images, labels in trainloader:
# Forward and Backward Step
# Define Metrics

if verbose:
print(f"Epoch {epoch+1}: train loss {epoch_loss}, accuracy {epoch_acc}")

def test(net, testloader):
"""Evaluate the network on the entire test set."""
return loss, accuracy

The clients then need to be defined using Flower, which extends the NumPyClient class with
several methods needed. Torch Trainloaders are an effective method for managing data in an
iterable manner.

Flower Client:

class FlowerClient(fl.client.NumPyClient):
def __init__(self, net, trainloader, valloader):
self.net = net
self.trainloader = trainloader
self.valloader = valloader



def get_parameters(self, config):
return get_parameters(self.net)

def fit(self, parameters, config):
set_parameters(self.net, parameters)
train(self.net, self.trainloader, epochs=1)
return get_parameters(self.net), len(self.trainloader), {}

def evaluate(self, parameters, config):
set_parameters(self.net, parameters)
loss, accuracy = test(self.net, self.valloader)
return float(loss), len(self.valloader), {"accuracy": float(accuracy)}

Flower requires that you implement the function client_fn that allows the simulation to create
clients. Partitioning the dataset into a list of distinct sets of torch DataLoaders is an effective
method for distributing unique data to each client.

Flower client_fn for client simulation:

def client_fn(cid: str) -> FlowerClient:
"""Create a Flower client representing a single organization."""

# Load model
net = Net().to(DEVICE)

# Load data
# Note: each client gets a different trainloader/valloader, so each client
# will train and evaluate on their own unique data
trainloader = trainloaders[int(cid)]
valloader = valloaders[int(cid)]

# Create a single Flower client representing a single organization
return FlowerClient(net, trainloader, valloader)

Flower includes a way to describe your own metrics for the federated system.

Evaluation Metrics:

def weighted_average(metrics: List[Tuple[int, Metrics]]) -> Metrics:
# Multiply accuracy of each client by the number of examples used
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
examples = [num_examples for num_examples, _ in metrics]

# Aggregate and return custom metric (weighted average)
return {"accuracy": sum(accuracies) / sum(examples)}



Flower comes packaged with many strategies for the simulated server to operate with for model
update aggregation, however you may define your own. The packaged strategies come with
several parameters.

Strategy:

# Create FedAvg strategy
strategy = fl.server.strategy.FedAvg(
fraction_fit=1.0, # Sample 100% of available clients for training
fraction_evaluate=0.5, # Sample 50% of available clients for evaluation
min_fit_clients=10, # Never sample less than 10 clients for training
min_evaluate_clients=5, # Never sample less than 5 clients for evaluation
min_available_clients=10, # Wait until all 10 clients are available
evaluate_metrics_aggregation_fn=weighted_average, # <-- pass the metric aggregation

function
)

The federated simulation can then be started by calling the start_simulation method.

Starting simulated Federated Learning:

# Start simulation
fl.simulation.start_simulation(
client_fn=client_fn,
num_clients=NUM_CLIENTS,
config=fl.server.ServerConfig(num_rounds=5),
strategy=strategy,
client_resources=client_resources,

)

# Sample Output
History (loss, distributed):

round 1: 31.653484654426574
round 2: 27.158826851844786
round 3: 25.561719250679015
round 4: 24.670892000198364
round 5: 23.940561509132387

History (metrics, distributed):
{'accuracy': [(1, 0.294), (2, 0.37200000000000005), (3, 0.4096), (4, 0.43), (5,
0.44959999999999994)]}

VAE
The autoencoder is a method of generating new data when another client is under-performing
as a way of mitigating data heterogeneity. This is done through a Variational Autoencoder
consisting of the following architecture built from PyTorch:



class VAE(nn.Module):
def __init__(self, x_dim, h_dim1, h_dim2, z_dim):
super(VAE, self).__init__()

# Encoder
self.fc1 = nn.Linear(x_dim, h_dim1)
self.fc2 = nn.Linear(h_dim1, h_dim2)
self.fc31 = nn.Linear(h_dim2, z_dim)
self.fc32 = nn.Linear(h_dim2, z_dim)
# Decoder
self.fc4 = nn.Linear(z_dim, h_dim2)
self.fc5 = nn.Linear(h_dim2, h_dim1)
self.fc6 = nn.Linear(h_dim1, x_dim)

def encoder(self, x):
h = F.relu(self.fc1(x))
h = F.relu(self.fc2(h))
return self.fc31(h), self.fc32(h) # mu, log_var

def sampling(self, mu, log_var):
std = torch.exp(0.5*log_var)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu) # return z sample

def decoder(self, z):
h = F.relu(self.fc4(z))
h = F.relu(self.fc5(h))
return F.sigmoid(self.fc6(h))

def forward(self, x):
mu, log_var = self.encoder(x.view(-1, 784))
z = self.sampling(mu, log_var)
return self.decoder(z), mu, log_var

After training this on a sample set from MedMNIST, specifically Organ CT Scans, it was able to
generate relatively similar data from a random distribution.

An advantage of a VAE over a normal AE, is that instead of just replicating an image that has
already existed, we can generate new data from a random sample of the latent space that we
can define. The VAE will have never seen the vectors generated from the random sampling,
letting us have new data to work with.



Knowledge Distillation
Knowledge Distillation is a method of compression for a machine learning modell. To perform
Knowledge Distillation you need a pretrained model named the teacher model and a smaller
untrained model named the student. The intent is to take the knowledge from the pretrained
teacher model and distill it into the smaller student model. With a quality teacher model,
Knowledge Distillation produces a student model that converges faster and with higher accuracy
than an identical student model trained without Knowledge Distillation.

Generally during training a model only considers the difference between its guess and the
answer. However, knowledge distillation is performed by modifying the loss function of the
student to include the difference between its logits (prediction) and the logits of the teacher. So,
in knowledge distillation, the student not only considers how far off it’s guess was from the
correct answer but also how far it’s guess was from the teacher model’s guess. It’s because of
the additional information provided by the teacher during training that allows the student model
to converge more quickly and with more accuracy than without the teacher’s logits.

def train_kd(student_model, teacher_model, trainloader, temperature, alpha):
‘’’ Train student model with pre-trained teacher model’’’

for epoch in range(epochs):
for images, labels in trainloader:
# Forward pass to gain student and teacher predictions
studentOut = student_model(input)
teacherOut = teacher_model(input)
# Calculate the loss between the student and teacher
distillation_loss = kd_loss_function(studentOut, teacherOut, temperature)
# Calculate the loss between the student and the correct output
student_loss = student_loss_function(studentOut)
# Calculate the total loss using regular loss calculation combined with kd loss
total_epoch_loss = alpha * student_loss + (1-alpha) * distillation_loss
# Continue train step as normal, performing backpropagation
…

Here, alpha is the learning rate and temperature is a hyper-parameter used to normalize the
teacher and student's predictions prior to calculating the distillation loss. There will be two
criterion functions, one for the student loss and another for distillation loss. There are a variety
of functions that can be used based on the needs of the programmer, but regardless of what
functions are chosen, the distillation process remains the same.



Conclusion
Our project attempted to utilize Federated Learning, Knowledge Distillation, and an Autoencoder
to encourage supportive data privacy with the ability to generate new data when one edge
device has a data quantity problem.
We were able to create the components and build an ensemble model utilizing the three key
features, specifically on a dataset of medical images from the MedMNIST dataset.

Appendix
Literature Reviews Document

Paper/Article Reviewer Summary

https://ai.googleblog

.com/2017/04/feder

ated-learning-collab

orative.html

Aaron CummingsThis article from google about federated learning is an

introduction to the concept that was published early in the

federated learning exploration. The post explores the different

applications of this learning model that google has successfully

used, like keyboard suggestions, and discusses potential areas

this could be implemented in. It provides a simple run down of

the methodology, benefits, and areas of improvement for the

concept and ends with a call to action for greater discussion and

exploration of the concept from the community.

https://ai.googleblog

.com/2017/04/feder

ated-learning-collab

orative.html

Andrew

Hutchison

This article discusses how Federated Learning works at a high

level, and then explains how Google is currently applying

Federated Learning into their ‘G-Board’ app via their own

Federated Averaging Algorithm. The article also describes how

they reduce necessary communication while also maintaining

high model quality through their FA algorithm, compression, and

the use of specialized algorithms for certain tasks.

Communication

efficient federated

learning via

knowledge

distillation

Aaron CummingsThe authors of this paper introduce their own federated learning

model called FedKD, where they use knowledge distillation and a

large mentor model and smaller mentee model that distill

knowledge to each other based on the Protégé Effect. Their

reasoning is that in current techniques, the models are too large

to effectively communicate. They also submit that by using this

method, each client can have a larger more personalized model.

They use singular value decomposition based dynamic gradient

approximation to compress the communicated models

dynamically.

https://kennesawedu-my.sharepoint.com/:w:/g/personal/acummi28_students_kennesaw_edu/EfKruudnmkVNiI9Qzequ_agB48SqJiU0iIp145cMxq_KQQ?e=72ZY5m


Communication-effic

ient federated

learning via

knowledge

distillation

Justin Bull Big Idea: "Learn intelligent models from decentralized private

data"

Current Problems Introduced:

Newer models have become so large in size that the

communication overhead is expensive, which is impractical.

Generally, larger models aren't used in conventional fed learning

systems.

Potential Solutions:

Gradient Compression | Codistillation

Implements a model utilizing a solution they introduced – FedKD

– and compared to other industry Federated Learning models.

Data-Free knowledge

Distillation for

Heterogeneous

Federated Learning

Aaron CummingsThis paper introduces the author's concept and implementation

of FeDGen, and Knowledge Distillation method to resolve data

heterogeneity among clients in a federated learning system. The

concept primarily operates on the concept of using local data to

create and share a generative model that can then be used to

generate data that offsets the heterogeneity of other local

models. The generator is trained on the prediction rule of user

models, to abstract user data. The generative model data

becomes an inductive bias for users that have limited data, or

also assume little variety in data. This allows their users to adjust

their decision boundaries to approach the ensemble wisdom. The

related work section covers a lot of other methods that would be

helpful to review.

Reliable Federated

Learning for Mobile

Networks

Aaron CummingsThis paper introduces the concept of reputation to federated

learning to distinguish between trusted and reliable

workers/clients and unreliable updates. Some of the data that

would be considered unreliable is data poisoning that is

intentional or unintentional, low-quality data from energy

constraints or communication. The approach uses a block chain

to decentralize and prevent tampering of reputation

management. This process uses consortium blockchains that

perform the consensus process on pre-selected miners, which is

supposed to be cost and time effective. Federated learning

addresses critical challenges of machine learning around single

points of failure, data leakage, storage and communication

overheads.



Federated Learning:

Challenges,

Methods, and Future

Directions

Aaron CummingsThis paper discusses the current state and projected future paths

of Federated Learning, while explaining the core motivations and

concepts behind the approach and implementation. Both the

applications and the edge devices that could utilize federated

learning models are explored and discussed. As well as the issues

and benefits of those devices and applications. Explains how

federated learning can be used in silo-ed data such as hospitals.

The paper has a good explanation of the hypothesis formulation

and cost function minimization for Federated learning. Privacy,

communication and Heterogeneity are all discussed at length and

how they impact Federated Learning. Scale is introduced as a

constraint, Local updating schemes where the local gradients are

averaged after a variable number of local updates rather than a

mini-batch SGD aggregated across edge devices. This approach

allows local models to update regularly and cut down on

communication overhead. Communication efficiency is

decomposed into three groups, local updating methods,

compression schemes, and decentralized training. Decentralized

training through network topology is presented as an approach

that is applicable to some applications of federated learning.

Many future directions for research are presented including,

extreme communication schemes, communication and reduction

and the Pareto frontier, Novel models of asynchrony,

Heterogeneity diagnostics, granular privacy constraint, beyond

supervised learning, productionizing federated learning, and

benchmarks.

https://www.tensorfl

ow.org/federated/fe

derated_learning

Aaron CummingsTFF is an interface that allows you to experiment with federated

learning with an existing model. It also provides datasets for

learning. There are tutorials on image classification and text

generation.



Federated Learning:

Strategies for

improving

communication

efficiency

Aaron CummingsThis paper discusses reducing network communication for a

typical client in two ways, structured updates, where learning an

update is done from a restricted space parameterized using a

smaller number of variables and sketched updates, where a full

model update is learned and then it is compressed using

quantization, random rotations, and subsampling. The problem is

defined as a large number of clients with highly unbalanced

non-I.i.d data and poor network connections.

Data-Free

Knowledge

Distillation for

Heterogeneous

Federated Learning

Justin Bull Big Idea: Proposal of a system - FedGen

Benefits:

Attempts to extract more information out of the limited data

availability from the users

Improves upon the local models as well as the global models -

Better for generalization

Communication Costs attempt to be nullified through only

sharing the predictive layer of the local models rather than the

entire model param

Similar to Communication-efficient federated learning via

knowledge distillation, proposes a model, and implements and

analyzes the results. Has a lot more math detailed/explained

within the paper itself.

What is Federated

Learning?

ODSC - Open Data

Science

[Link]

Justin Bull Explains the main idea of what Federated Learning is – training a

local and global model while attempting to utilize data privacy

measures before redistributing a better model to the users.

Benefits Established:

Real Time predictions

Collaborative training on a range of data sources

Privacy through keeping data on local devices

No need for internet connection on predictions

Attempts to use the cluster idea to remove some of the necessary

hardware requirements

Similar to the First two papers: There is a problem involving

minimal data availability that must be addressed

https://odsc.medium.com/what-is-federated-learning-99c7fc9bc4f5


A Survey on

Federated Learning

for

Resource-Constraine

d IoT Devices

Andrew

Hutchison

This paper provides a literature review on existing Federated

Learning studies and then explains we might train distributed ML

models on, or using, resource-constrained Internet of Things

devices. The benefits of FL are described as well as some of the

complications/bottlenecks that come with the implementation of

FL. Then, an overview of several FL survey papers is given and a

brief comparison of different types of FL models is given. The FL

models covered includes Horizontal FL, Vertical FL, and Federated

transfer learning. Furthermore, the paper gives a high-level

overview on 4 different Federated Learning Algorithms.

Federated Learning:

A Survey on Enabling

Technologies,

Protocols, and

Applications

Justin Bull Survey Paper

Doesn’t add much more than
https://odsc.medium.com/what-is-federated-learning-99c7fc9bc4f5 or
Data-Free Knowledge Distillation for Heterogeneous Federated

Learning

Does include a summary of Optimization techniques and best

practices for Federated Learning Systems

Introduces an idea for data stability and helping lower

communication costs through choosing reputable and trusted

local models ‘mentees’ (term is used in a different paper with a

similar system of mentors and mentees), and only gathering data

from a subset of the local models at a time – depending on how

trustworthy they are evaluated to be.

Robust and

Resource-Efficient

Data-Free

Knowledge

Distillation by

Generative Pseudo

Replay

Aaron CummingsThis paper expands on data-free KD, where an encoder and

decoder are trained and used for knowledge distillation and data

synthesis. They explore the idea of using generative replay

strategies in continuous learning to prevent catastrophic

forgetting.
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